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Recall the panorama creation process

Identification of the 
corresponding 
“key points” required!
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Slide credit: Steve Seitz

Manual selection often nontrivial

NASA Mars Rover images
(Figure by Noah Snavely)

Corresponding key points selection
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NASA Mars Rover images
with SIFT feature matches
(Figure by Noah Snavely)

Slide credit: Steve Seitz

Corresponding key points selection
Manual selection often nontrivial
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A case study: Automatic panorama creator
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• Standard procedure:

• Detect interest points (key-points) in both images

Slide credit: Darya Frolova, Denis Simakov

A case study: Automatic panorama creator
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• Standard procedure:

• Detect interest points (key-points) in both images

• Find pairs of corresponding points

Slide credit: Darya Frolova, Denis Simakov

A case study: Automatic panorama creator
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• Standard procedure:

• Detect interest points (key-points) in both images

• Find pairs of corresponding points

• Use these pairs for image registration

Slide credit: Darya Frolova, Denis Simakov

A case study: Automatic panorama creator

(e.g., RANSAC/least-squares 
transformation model estimation)
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Efficient keypoint detector requirements

• Requirement 1:

• Detect the same structure independently in each image.

Bad idea: By random sampling in each image, 
we will not likely detect the same points.

A detector with a high detection repeatability is required!

Try random sampling?
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Efficient keypoint detector requirements

• Requirement 1:

• Detect the same structure independently in each image.

• Requirement 2:

• For each point find a corresponding point in the other image.

?

A reliable and distinctive descriptor is required!

10



Outline of this lecture

1. Keypoint DETECTION

2. Keypoint DESCRIPTION

3. Keypoint MATCHING
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SINGLE SCALE KEY-POINT DETECTION
Machine Perception
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Corners as keypoints

• Distinctive and repeatedly occurring on the same structures even if the 

structure changes pose in 3D
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C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings of the 
4th Alvey Vision Conference, 1988.

http://csce.uark.edu/~jgauch/library/Features/Harris.1988.pdf


Require a corner response function – CRF

• An operator that gives a strong response on the corner structure
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Corner: High value
No corner: Low value

Corner response function (CRF)



• A good corner detector criteria: Self similarity
• Observe a small window 𝑅 around a potential corner (locality).

• A small shift in window in any direction results in a large intensity change 
(good localization)

“Edge”:
No change when shifting
along the edge, otherwise
there is a change.

“Corner”:
A shift in any direction
significantly changes the
local intesity.

“Flat” region:
A small shift in any
direction does not cause
an intensity change.

Slide credit: Alexej Efros

Corner response function: Intuition
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Harris corner detector

• The intensity change for a shift [u,v]:
(weighted autocorrelation function)

Intensity
afer the shift

Intensity before 
the shift

Weight
function

Slide credit: Rick Szeliski

Weight function w(x,y) =

Gaussian kernel 𝐺(𝜎)

The 𝜎 specifies the region 𝑅 size!
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𝐸𝑅(𝑢, 𝑣) should be large 
for any small 
displacement (u,v)

𝜎

(𝑢, 𝑣)

𝐸𝑅



Harris corner detector

• Linearize for small shifts (𝑢, 𝑣):

I 𝑥 − 𝑢, 𝑦 − 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼𝑥 𝑥, 𝑦 , 𝐼𝑦(𝑥, 𝑦)
𝑢
𝑣

• Plug into the weighted autocorrelation
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𝐼𝑥 𝑥, 𝑦 =
𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
, 𝐼𝑦 𝑥, 𝑦 =

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦



• For small shifts (𝑢, 𝑣) E can be linearly approximated by:

with M 2x2 matrix of image derivatives:

Harris corner detector

A weighted sum over the region R centered at (x,y) 
in which we are verifying a corner

Construction of 𝑀 can be made more efficient!
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Construction of M
Ix

Image I

IxIy

Iy

𝐺 𝜎 ∗ 𝐼𝑥
2

𝐺 𝜎 ∗ 𝐼𝑦
2

𝐺 𝜎 ∗ 𝐼𝑥𝐼𝑦

Note, M is different for each location
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Harris corner detector

• Matrix M is the covariance matrix of region gradients:

• A corner is detected by analyzing the gradient covariance matrix

Ix
Image I IxIyIy
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• Visualize the covariance matrix as an ellipse...

• Decompose into eigenvectors and eigenvalues:

Direction of
a fast change

(large gradient)

Direction of a slow change
(smal gradient)

The Covariance matrix analysis

M
(min)

1/2

(max)
1/2

eigen values (ellipse SCALING)

eigen vectors
(ellipse ROTATION)
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The Covariance matrix analysis

• Visualize the covariance matrix as an ellipse...

• Decompose into eigenvectors and eigenvalues:

• A corner has a strong gradient in both major directions!

• A corner is present when both eigenvalues are large.

Direction of
a fast change

(large gradient)

Direction of a slow change
(smal gradient)

M
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Eigen values: Interpretation

• Corner detection by eigenvalues of M:

“corner”
1 and 2 are large,  1 ~ 2;

E increases/decreases in all
directions approximately equally.

1 and 2 small;

E almost constant in all
directions.

“edge” 
1 >> 2

“edge” 
2 >> 1

“homogenous” 
region

2

1

Direction of a fast change (large 
gradient)

Direction of a slow change (smal gradient)

(min)
1/2

(max)
1/2
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Eigen values: Interpretation

• Problem: Calculating the eigenvalues at each pixel is computationally intensive!

• Solution: We are after the ratio between the two eigenvalues and a rough estimate 

of their magnitude.

Standard results:

This is the corner response function!
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The corner response function

• In practice, fix 𝛼 and check if corner response function exceeds a threshold

• We can calculate the Determinant and Trace directly:

In practice, α: (0.04 to 0.06)
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Harris corner detector: Summary

• Calculate the covariance matrix

(by virtue of autocorrelation)

1. Image
derivatives

Ix Iy

2. Squared
derivatives

Ix
2 Iy

2 IxIy

3. Gaussian
filtered squared 
derivatives g(sI) g(Ix

2) g(Iy
2) g(IxIy)

R

2 2 2 2 2 2( ) ( ) [ ( )] [ ( ) ( )]x y x y x yg I g I g I I g I g I= − − +

c(I) = det[𝑀] − 𝛼[trace2(𝑀)]

4. Corner presence– two strong eigen values

5. Apply a non-maxima suppression

0.    The source image
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Harris corner detector: Summary
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Harris corner detector: Summary

• The Corner response function:
29



Harris corner detector: Summary

• Set values lower than a threshold to zero: c(c < threshold) = 0
30



Harris corner detector: Summary

• Find the local maxima in c(I)
31



Harris corner detector: Summary

• Detected Harris corners
32



Harris detector
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Local curvature as a key-point presence measure

34



• Determinant of a Hessian

Ixx

IyyIxy

Intuition: Find strong gradients in two orthogonal directions

The Hessian corner detector

35

Note: these are second order 
derivatives!

(Recall what Hessian means
→ a measure of local curvature)



• Determinant of a Hessian

Ixx

IyyIxy

Slide credit: Krystian Mikolajczyk

Note: these are second order 
derivatives!

(Recall what Hessian means
→ a measure of local curvature)

The Hessian corner detector

. ( ).^ 2xx yy xyI I I −

In Matlab:
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[P, H] = harris(I0, 1, 1e3) ;



Result: responses on corners and blobs.

The Hessian corner detector
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A number of keypoint detectors exist

• Hessian & Harris [Beaudet ‘78], [Harris ‘88]

• Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]

• Harris-/Hessian-Laplace       [Mikolajczyk & Schmid ‘01]

• Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]

• MSER [Matas ‘02]

• FAST , and lots of others

• A very good tutorial ECCV 2012. 

• Learning-based detectors introduced in the last five years.

• These detector have become building blocks of numerous computer vision 

applications!
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http://eccv2012.unifi.it/program/tutorials/modern-features-advances-applications-and-software/


• Is it rotation invariant?

Ellipse rotates, but its shape (e.g., eigenvalues) 
remains unchanged!

The corner response function is rotation invariant!

Harris/Hessian detector: properties

Slide credit: Kristen Grauman 39



• Rotation invariance

• Is it invariant to scale change?

NOT invariant to scale change!

Slide credit: Kristen Grauman

scale the curve

None of the points 
classified as a potential 

corners!

corner

Harris/Hessian detector: properties

40



SCALE INVARIANCE
Machine Perception

41



Key point neighborhood

• Harris and Hessian determine the key-point location

• Later we will see that keypoints are matched

by comparing their neighborhood patches.

• For practical applications, the scale (local size) of the keypoint has to be 

estimated as well.

42



Naive approach: check all scales

• Check all scales exhaustively

• Vary the region size and compare the descriptors...

e.g. color e.g. color

similarity measure
Af

Bf

),( BA ffd



Slide credit: Krystian Mikolajczyk43



Naive approach: check all scales

• Check all scales exhaustively

• Vary the region size and compare the descriptors...

Af
Bf

),( BA ffd


e.g. color e.g. color

similarity measure

Slide credit: Krystian Mikolajczyk44



Naive approach: check all scales

• Check all scales exhaustively

• Vary the region size and compare the descriptors...

Af
Bf

),( BA ffd


e.g. color e.g. color

similarity measure

Slide credit: Krystian Mikolajczyk45



Naive approach: check all scales

• Check all scales exhaustively

• Vary the region size and compare the descriptors...

• Very inefficient!

• Need to identify the scale at each 

point independently from the

other images

Af
Bf

),( BA ffd

=
e.g. color e.g. color

similarity measure

Slide credit: Krystian Mikolajczyk46



Automatic scale selection

• Solution: construct a scale invariant function on a selected region

• Outputs the same value for regions with the same content, even if the regions 

are located at different scales.

Example:  Average intensity of the gray-scale region. 
Even if two corresponding regions are at different scales, we will 
get the same output.

241.3
241.3

47



Automatic scale selection

• Function responses to different scales (scale signatures) 
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Slide credit: Krystian Mikolajczyk 48



Automatic scale selection

• Function responses to different scales (scale signatures) 
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Slide credit: Krystian Mikolajczyk49



Automatic scale selection

• Function responses to different scales (scale signatures) 

)),((
1

xIf
mii 

)),((
1

xIf
mii




Slide credit: Krystian Mikolajczyk50



Automatic scale selection

• Function responses to different scales (scale signatures) 
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Slide credit: Krystian Mikolajczyk51



Automatic scale selection

• Function responses to different scales (scale signatures) 
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Slide credit: Krystian Mikolajczyk52



Automatic scale selection

• Function responses to different scales (scale signatures) 
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Slide credit: Krystian Mikolajczyk53



• Natural images abundantly contain blob-like features

• Blob detection – find regions that locally look like “spots”

• Laplacian of Gaussian (LoG): 

Circular-symmetric  operator for blob detection...

What is a useful keypoint signature function?
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Blob size matching == scale selection

• Laplacian of Gaussian = blob detector

Fi
lt

er
 s

iz
es

 (
sc

al
es

)

img1 img2 img3
Slide credit: Bastian Leibe

Note the maximal
Response at different
scales!
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filter „diameter“

Detecting characteristic scale

• The characteristic scale is the scale at which the LoG filter yields a 

maximum response.

T. Lindeberg "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2), 1998. 

x

characteristic scale

56

tu

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Previously at MP...

• Key-point detection

• Analysis of gradient distribution

• Harris, Hessian

• Scale (region size) selection
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Laplacian pyramid implementation

• Key-points: 

• Local maxima in scale space of 

the LoG filter.

)()(  yyxx LL +



2

3

4

5

Slide adapted from Krystian Mikolajczyk

Laplacian pyramid!
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Laplacian pyramid implementation

)()(  yyxx LL +



2

3

4

5

Compare LoG at each point to its 8+9 × 2 neighbors (same scale + upper/lower scale.)
Slide adapted from Krystian Mikolajczyk

• Key-points: 

• Local maxima in scale space of 

the LoG filter.
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Laplacian pyramid implementation

)()(  yyxx LL +



2

3

4

5

Compare LoG at each point to its 8+9 neighbors (same scale + upper/lower scale.)
Slide adapted from Krystian Mikolajczyk

• Key-points: 

• Local maxima in scale space of 

the LoG filter.
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Laplacian pyramid implementation

)()(  yyxx LL +



2

3

4

5

 List (x, y, σ)

Let’s look at
an example…

Compare LoG at each point to its 8+9 neighbors (same scale + upper/lower scale.)
Slide adapted from Krystian Mikolajczyk

• Key-points: 

• Local maxima in scale space of 

the LoG filter.
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LoG detector in action

Slide credit: Svetlana Lazebnik

Input image
62



LoG detector in action

LoG filtered image (varying sigma)
Slide credit: Svetlana Lazebnik63



LoG detector in action

Local maxima across scales
Slide credit: Svetlana Lazebnik64



LoG approximation by difference of Gaussians

• The LoG can be well approximated with a difference of Gaussians at 

different values of 𝜎.

(normalized Laplacian of Gaussian)

(Difference of Gaussians)

65

Voodoo?! 



Not Voodoo – Technical details

• Let u(x,y,t) be a density of diffusion material (eg., heat) at location (x,y) at time t.

• Then this holds:

• Instead u take a Gaussian g, instead t, use its variance σ2.

• Using the finite differences we get the following approximation:

• Which yields:

http://en.wikipedia.org/wiki/Heat_equation66



Difference of Gaussians (DoG)

• Difference of Gaussians is an approximation of the LoG

• Advantages

• Does not require computation of second derivatives

• Results of Gaussian filtering already calculated during

calculation of image resizing (Gaussian Pyramid!).

- =

Slide credit:B. Leibe

How to efficiently localize the key-points using DoG?
67



Reference image
4

1

2=

Subsample by
step size s4 =2

Slide adapted from Krystian Mikolajczyk

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International 
Journal of Computer Vision, 60, 2 (2004), pp. 91-110

• Calculated from a Gaussian pyramid (sequential octaves equivalent to filtering with                              )

s 
in

te
rv

al
s

DoG pyramid– Efficient calculation
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Key-point localization using DoG

• Find local maxima of DoG in the scale-space.

• Check 8+2*9=26 neighbors

• Remove the low contrast points 

(threshold dependent)

• If local change in response is small compared to 

neighbors.

• Remove points detected at the edges

• Test using the Hessian matrix.

Blur 

Resample

Subtract

Key-point candidates: 
List of triplets (x,y,σ)

Fit a quadratic function to each key-
point and its neighbors to improve 
localization of the maxima (x,y ,σ).

Slide credit: David Lowe69



Slide credit: David Lowe

(a) 233x189 image

(b) 832 extremes in DoG

(c) 729 remain after 
contrast verification

(d) 536 remain after 
verification of the Hessian 
matrices.

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 2004

Local extremes

Contrast verified Hessian verified

Results: Lowe’s DoG-based detector
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Results: Lowe’s DoG-based detector
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• Input: Image of some scene taken at unknown scale.

• Goal: Find stable key-points independently in each image.

• Solution:
Find maxima of specialized functions in scale-space and image coordinates.

• Two strategies
• Laplacian of Gaussian (LoG)

• Difference of Gaussians (DoG) as an efficient approximation

Summary: scale-invariant key-point detection
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LOCAL DESCRIPTORS
Machine Perception
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Local descriptors

• Now we know how to detect the key-points

• Next question:

How to describe them?

?

Key-point descriptors should be:
1. Distinctive (be different for keypoints on different structures)
2. Invariant to ambiental changes
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Invariance of descriptor

• Geometric transformations

• Photometric transformations

• Often modeled by

intensity scaling and translation
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Scale invariant detection (already covered)

• For comparing regions, normalize: Rescale to a predefined size

)),((
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xIf
mii 

)),((
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Slide credit: Krystian Mikolajczyk

Important: the region location and size (scale) is determined independently
in each image for each key-point!
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Local descriptors

• The simplest descriptor: a vector of region intensities.

• Analyze the invariance of such descriptor…

• Small shifts may cause a large change in the descriptor.

• Sensitive to photometric changes.
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Invariances
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Descriptor: SIFT

• Scale Invariant Feature Transform:

• Split region into 4x4 sub-regions: 16 cells

• Calculate gradients on each pixel and smooth over a few neighbors.

• In each cell calculate a histogram of gradient orientations (8 directions)

• Each point contributes with a weight proportional to its gradient magnitude

• The contribution is weighted by a Gaussian centered at the region center

• Descriptor (Stack histograms into a vector and normalize): 4x4x8 = 128 dim

Actually, there are a few important suttle details:
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Slide adapted from Svetlana Lazebnik

SIFT

79

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• The SIFT from previous slide is not rotation-invariant.

• Calculate the histogram of orientations

• 36 bins by angle, each point contributes proportionally to its gradient magnitude and 

distance from the center.

• Determine the dominant orientation from histogram

• Normalize: rotate gradients into a rectified orientation

Calculate the SIFT using these rectified gradients.

45

0 2p

Gradient orientation histogram

Some keypoint
Region considered

Invariance: Orientation normalization
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• The SIFT from previous slide is not rotation-invariant.

• Normalize: rotate gradients into a rectified orientation

• Find all orientations in histogram, whose amplitude is, e.g., 80% of the 

strongest bin.

• Form a separate SIFT for each detected orientation.

0 2p

45 80

Gradient orientation histogram

Some keypoint
Region considered

Invariance: Orientation normalization
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Summary: SIFT

• A surprisingly robust key-point descriptor

• Allows ~60 degrees of out-of-plane rotation

• Robust to significant intensity changes

• Fast (lots of real-time implementations)

Slide credit: Steve Seitzhttp://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT 82

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


Affine adaptation

• We have addressed invariance to 

• Translation

• Scale

• Rotation

• But that’s not enough for very large changes in viewpoint

• We require an affine adaptation!

Slide credit: Tinne Tuytelaars83



Affine adaptation

• Problem: 

• Determine the characteristic shape of local region.

• Assumption: shape described by an affine local window.

• Solution: iterative approach

• In circular window calculate a gradient covariance matrix (similar to Harris)

• Estimate an ellipse from the covariance matrix

• Using the new window calculate the new covariance matrix and iterate.

Slide credit: Svetlana Lazebnik

K. Mikolajczyk and C. Schmid, Scale and affine invariant interest point detectors, IJCV 60(1):63-86, 2004. 

84

http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf


Affine adaptation: Example

Detect blobs accross scales

Slide credit: Svetlana Lazebnik85



Affine adaptation: Example

Affine-adapted regions

Slide credit: Svetlana Lazebnik86



Affine patch normalization

• Transform the patch such that the ellipse becomes as circle.

• Rotate the region such that the ellipse rotates into a horizontal position

• Scale the region such that the ellipse transforms into a circle

Note: Rotation + Scaling computed from the (ellipse, Σ) eigen vectors and eigen values

Rotate Scale

87

Σ = 𝑈𝑆𝑈𝑇

R = 𝑈−1 𝑆−1/2



• For each key-point determine the affine adaptation, and calculate the descriptor 

from the rectified region.

Determine the affine 

region
Remove the

rotational ambiguity

Slide credit: Svetlana Lazebnik

Summary: Affine invariance

Normalize region

D
e-

sk
ew

SIFT (Lowe ’04)

Form a descriptor

from normalized region
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Correspondences using keypoints

• Compare keypoints by calculating the Euclidean distance (𝐿2 norm) between 

descriptors.

• Strategy 1: For each keypoint in the left image identify the most similar keypoint in 

the right image.

• Result: potential (putative) matches/correspondences 

left image right image
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Correspondences using keypoints

• Strategy 2: Keep only symmetric matches

Definition of a symmetric match:

• “Let point A be a point in the left image and point B its match in the right image. If B is most similar to A 

among all points in the right image and vice versa, they form a symmetric match.”

left image right image
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Correspondences using keypoints

• Strategy 3: Calculate the similarity of A to the second-most similar keypoint and the 

most similar keypoint and in the right image.

• Ratio of these two similarities will be low for distinctive key-points and high for 

non-distinctive ones.

• Threshold ~0.8 gives good results with SIFT.

David G. Lowe. "Distinctive image features from 
scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Finally stitching can be fully automated

• Detect key-points independently in each image

• Determine potential correspondences 

• Reject improbable correspondences by strategy 1,2, or 3

• Perform RANSAC to find the inliers and fit the model
All correspondences + filtering by strategy 1,2,3 +RANSAC:
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Recent work on keypoint detection

• SuperPoint – a convolutional neural network trained to “fire” on a key point

• Keypoints trained on simulated data, adapted to real data, re-trained for 

joint extraction of keypoints and descriptors

94

DeTone et al., SuperPoint: Self-Supervised Interest Point Detection and Description, CVPR2018 

https://arxiv.org/abs/1712.07629


Recent work on keypoint detection

95

DeTone et al., SuperPoint: Self-Supervised Interest Point Detection and Description, CVPR2018 

https://arxiv.org/abs/1712.07629


Recent work on correspondences matching

96

Sarlin et al. SuperGlue: Learning Feature Matching with Graph Neural Networks, CVPR2020 (video)

https://openaccess.thecvf.com/content_CVPR_2020/html/Sarlin_SuperGlue_Learning_Feature_Matching_With_Graph_Neural_Networks_CVPR_2020_paper.html
https://www.youtube.com/watch?v=BNaIGI4VncM


Numerous detectors/descriptors exist

• We have only considered a most popular descriptor (SIFT, Lowe2004)

• Note that Lowe proposed DoG for keypoint detection and SIFT for descriptor –

don’t mix these!

• Many efficient and really fast descriptors have been presented since.

• Significant research currently invested into end-to-end learning the 

keypoint detection, description and matching process by convolutional 

neural nets.
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